
Component-based Modeling of Dynamic Systems using
Heterogeneous Composition

Zsolt Lattmann
Vanderbilt University
Nashville, TN, USA

lattmann@isis.vanderbilt.edu

Adam Nagel
Vanderbilt University
Nashville, TN, USA

adam@isis.vanderbilt.edu

Tihamer Levendovszky
Vanderbilt University
Nashville, TN, USA

tihamer@isis.vanderbilt.edu
Ted Bapty

Vanderbilt University
Nashville, TN, USA

bapty@isis.vanderbilt.edu

Sandeep Neema
Vanderbilt University
Nashville, TN, USA

sandeep@isis.vanderbilt.edu

Gabor Karsai
Vanderbilt University
Nashville, TN, USA

gabor@isis.vanderbilt.edu

ABSTRACT
Cyber-Physical Systems (CPS) are composed of computa-
tional and physical components, which includes various types
of physical phenomena such as electrical and mechanical do-
mains. Many modeling paradigms exist to model the static
properties and dynamic behavior of such components. How-
ever, there is no unified modeling framework to compose
components that use different paradigms and/or tools. In
this paper, we present the syntax and semantics of such
an integration language and its component-based design,
where components can embed models from different tools,
formalisms, and paradigms such as Bond Graphs and Mod-
elica models. Our framework is built around common set
of interface concepts to support heterogeneous composition
and interchangeability among modeling paradigms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE)

1. INTRODUCTION
Cyber-Physical Systems (CPS) are heterogeneous systems
composed of computational and physical components, which
often appear in safety-critical applications such as avion-
ics, nuclear power plants, and life-critical control systems.
Complex electro-mechanical systems, such as next genera-
tion combat vehicles, also fall into this category. The latter
is the primary focus of DARPA’s Adaptive Vehicle Make
(AVM), a portfolio of programs that address revolutionary
approaches to the design, verification, and manufacturing of
complex defense systems and vehicles. This paper addresses
the composition of complex electro-mechanical components
of CPS with the following characteristics: (i) the compo-
sition includes causal and acausal components, (ii) physi-
cal variables are shared across component boundaries, (iii)

component behavior models are represented using different
paradigms, and (iv) the models are supplied by different
tools. Our solution also supports interchangeability of com-
ponents with the same functionality.

This paper is organized as follows. We will present back-
ground information in Section 2 and motivate our work in
Section 3. Section 4 presents our solutions to the problems
detailed above, featuring the syntax and the semantics of
the integration language. Finally, conclusions are drawn in
Section 6.

2. BACKGROUND
In order to describe the composition of CPS, we must clar-
ify the concept of causality. From a simplified point of view,
a system is considered acausal if all forms of its equation
model features an algebraic loop. Otherwise, it is consid-
ered a causal system. A more precise definition can be found
in [14]. According to its terminology, the class of systems
considered by this paper is nonanticipating. Typically, com-
putational systems are causal, while physical systems may
be acausal.

2.1 Simulink
Simulink [13] is an environment for Model-Based Design and
Simulation and includes a variety of libraries. Simulink mod-
els use causal signal flow diagrams that have input and out-
put ports. Each connection is a directional, causal connec-
tion between a source and a destination port. The underly-
ing simulation engine for Simulink is provided by MATLAB,
which appears in the syntactical constructs as well.

2.2 Acausal Modeling Paradigms
Control design involves two distinct paradigms: the dis-
crete specification of the controller and a continuous pro-
cesses governed by the laws of physics. While a discrete
controller can naturally be modeled as signal flows, the key
to modeling physics is the use of an acausal modeling frame-
work [14]. Using causal models (e.g. signal data flows) to
represent interactions between components that share phys-
ical variables can be complex. Typically, acausal physics
models have power ports, which represent a simultaneous,
bidirectional energy exchange between components [11] [9].
A well-formed model in an acausal framework represents a



well-formed set of dynamic equations. Acausal models typ-
ically must interface with causal models to represent the
integration of a controller function into a physical system.
This requires carefully directed variable sharing between cy-
ber and physical system components (e.g. through sensors
and actuators). This is one of the key issues of this paper.
In the following, we discuss the two most important acausal
modeling paradigms.

2.2.1 Hybrid Bond Graph Modeling
Bond Graphs [9] are a physics-based, domain-independent
graphical notation for describing the behavior of components
and systems which can be modeled using differential alge-
braic equations. Bond graphs generically model the energy
exchange between different types of energy storage and con-
version components, analogous to a circuit diagram in the
electrical domain. Bond graphs are composed of the follow-
ing primitive elements: source of effort (Se), source of flow
(Sf), resistor (R), capacitor (C), inertia (I), transformer
(TF ), gyrator (GY ), one-junction (1), and zero-junction (0).
These primitive elements are connected through junctions,
which correspond to either common flow (one-junction) or
common effort (zero-junction). For example, in electrical
circuits, one-junctions (common flow) represent series con-
nections and zero-junctions (common effort) represent par-
allel connections. The connections between the primitive
Bond Graph elements and the junctions are called bonds,
each of which represents an effort and a flow variable. The
product of the effort and flow variables is the power flowing
between the connected elements.

In our previous work, we have extended Bond Graphs in
multiple ways to include modulated elements, domain-specific
power ports, and hierarchical modeling support [9]. Domain-
specific power ports (e.g. electrical power port) connect
quantities in one component with another, and each includes
two variables: a domain specific effort (e.g. voltage) and a
domain specific flow (e.g. current). Power ports can be con-
nected to either a one-junction or a zero-junction only. Bond
Graphs easily and uniformly represent electrical, rotational,
translational, thermal, and other types of power domains.
Input signals are either control parameters (e.g. modulate
an effort or a flow source) or directly influence the system
behavior through functions on the physical variables (i.e. de-
termine the parameter value of a modulated element). The
Hybrid Bond Graph Language (HBGL) includes the abil-
ity to resolve causality and create a Simulink model from a
Bond Graph model [9]. HBGL also supports domain specific
power ports for valid component composition.

2.2.2 Modelica
Modelica is a modeling language for dynamic systems that
is equation-based and uses signals to express physical con-
straints imposed by physical connections in the system [11]
[3]. Modelica is an object-oriented mathematical modeling
approach to systems modeling. The building blocks of the
models are stereotyped classes, of which the most important
constructs are models, blocks, and connectors. Models can
describe hybrid models, which are composed of discrete and
continuous variables. Blocks are similar to models with a
restriction that they can only expose those connectors that
are tagged as input or output. Connectors are ports repre-
senting causal/acausal signal variables. The behavior of the

building blocks is defined by equations. Modelica does not
strive for the uniformity of representation that Bond Graphs
provide, but provides a library of standard components for
each physical modeling domain called Modelica Standard
Library (MSL). Also, Modelica simplifies connecting physi-
cal variables by its interconnection model. Interconnections
among components are made using connections (i.e. con-
nect statements) between connectors, which directly repre-
sent physical connections (e.g. attaching a wire to a pin
of an electronic device), enabling the compositional defini-
tion of system behaviors. Each connector that represents a
physical interface has the same number of flow and poten-
tial variables. For instance, an electrical pin connector has
a voltage (potential) and current (flow) variable. For a well-
formed model, Modelica compilers translate all of the model
subsystems and connections into equations suitable for sim-
ulation or analysis. Unlike Bond Graphs, the Modelica lan-
guage is an international standard that has well-supported
commercial tools. Modelica is an open-source language and
has some level of open-source compiler support as well as an
open-source standard library (MSL).

3. MOTIVATION
In order to drive our focus, outlined in Section 1, we needed
a component-based modeling framework of such systems,
where component models were coming from different tools.
We illustrate this through a case study using a simple electro-
mechanical system. A schematic of the system is shown in
Figure 1. The system is modeled using Modelica blocks and
the simulation can be executed using a Modelica tool. The
example uses three different domains: (i) electrical (stepV oltage,
resistor, inductor and emf), (ii) mechanical rotational (emf ,
inertia, damper and idealRollingWheel), and (iii) mechan-
ical translational (idealRollingWheel and mass).

Figure 1: Schematic diagram of the case study

To model further components of the same system (e.g. resistor
and idealRollingWheel), we would like to use the formalisms
of another modeling paradigm, namely Bond Graphs. In or-
der to support this setting in a design environment, we need
the following: (i) a common, consistent modeling framework
that can interface to models that are based on various for-
malisms and paradigms, (ii) a composition approach that is
able to integrate and simulate the system as a whole, and
(iii) the ability to adapt the system models to widely used
tools in order to able to simulate the composed system.

In the following, we illustrate the objective with an exam-
ple for the expected solution. Regarding the case study,
this means that we create the same system along with its
connections shown in Figure 2. The puzzle pieces represent
components, which are Modelica models. The expected so-
lution along with its simulation results is shown in Figure 2.



Figure 2: CyPhyML diagram and results

The plot shows the simulation results of: (1) the angular
velocity of the inertia, (2) the force on the translational in-
terface of the idealRollingWheel, and (3) the current on the
positive electrical pin of the resistor.

We have changed the underlying model types from Modelica
to Bond Graphs for the resistor and the idealRollingWheel
components. The generated simulation results are identical
with respect to the variables mentioned above and as it is
shown in Figure 2. We used a simple example, where the
models of the components are easy to develop either us-
ing Modelica or Bond Graphs. A more practical example
is a drive train model, where the engine and transmission
components can be modeled using Modelica, and the final
drive and the load components can be modeled as Bond
Graphs. The integration language supports heterogeneous
composition of components implemented using Bond Graphs
and Modelica. Thus, it should characterize interfaces in
terms of the commonalities between the supported modeling
paradigms. We will present the integration language and its
semantics.

4. APPROACH
We chose a Domain Specific Modeling Language (DSML)
to implement the integration language. DSMLs are flexi-
ble to support iterative refinement and can capture multiple
paradigms as well as complex electro-mechanical system do-
mains. We used the Generic Modeling Environment (GME),
a meta-programmable editor, for creating this domain-specific
integration language [7]. For the AVM program, a Cyber-
Physical Modeling Language (CyPhyML) was created for a
diverse set of design tasks. This paper describes the sub-
set of the CyPhyML meta-model (language) and explains in
detail the concepts relevant to the behavior of dynamic sys-
tems. CyPhyML, as an integration meta-model, supports
two different paradigms with respect to modeling dynamic
systems: Hybrid Bond Graph Language (HBGL) and Mod-
elica.

4.1 Modeling language
CyPhyML has different modeling aspects and one of them
is the dynamics aspect of components. In CyPhyML com-
ponents different behavior models can provide a common
set of interfaces, and can be composed through them. Also,
The modeling framework supports hierarchical composition
of reusable CyPhyML components.

4.1.1 Interfaces of CyPhyML components

A Component in CyPhyML is an atomic building block. A
CyPhyML component is defined by its interfaces: (i) param-
eters, (ii) signal ports, and (iii) power ports. Each compo-
nent includes a behavior model, a mathematical abstraction
of a real-world physical system which represents the compo-
nent’s dynamic behavior. A behavior model can be specified
using the HBGL or Modelica. HBGL models can be drawn
within a component using CyPhyML, while Modelica mod-
els are incorporated by referring to an external Modelica
model. These references in CyPhyML replicate the param-
eters, signal ports, and power ports of Modelica models,
but do not include the internals or Modelica code. These
external models may come from the Modelica Standard Li-
brary or from a user-defined library. Both behavioral model

Figure 3: Component model using Bond Graph or
Modelica

interfaces should be mapped to the CyPhyML component
interfaces shown in Figure 3. Figure 3 depicts two compo-
nents representing the same behavior: the component on
the top uses HBGL and the component on the bottom uses
Modelica.

4.1.2 Internals of CyPhyML components
CyPhyML components use their own interface definition to
support composition between components and to provide
common structure among different modeling paradigms. Fig-



ure 3 shows an example for the mapping between the Cy-
PhyML component-level interfaces and behavioral model in-
terfaces. The mapping is defined by a connection C(A,B),
where C represents the connection; A is the source element;
and B is the destination element. The mapping and the
connections, which are described below are only the inter-
nal connections that wire the component up to its inter-
faces. Examples are given for Figure 3. The semantics of the
connections are as follows. For parameters (real numbers),
C(A,B) means B := A (e.g. Eq. 1) during the model instan-
tiation. This mapping represents a causal assignment be-
tween A and B, where A drives B. For signal ports, C(A,B)
means the signal value of B is equal to the signal value of A
during the entire simulation. It is also a causal connection
and A drives B.

BondGraph.R := R

ModelicaModel.R := R
(1)

While power ports are acausal connections and they contain
multiple variables at the same time, the mapping needs to be
defined through equations using variables of the power ports.
Modelica electrical pin maps to CyPhy electrical power port:
C(A,B) is going to be resolved as Eq. 2 (e.g. Eq. 3).

A.voltage = B.voltage

A.current + B.current = 0
(2)

ModelicaModel.p.v = positive.voltage

ModelicaModel.p.i + positive.current = 0
(3)

Bond graph electrical port maps to CyPhy electrical power
port: C(A,B) is going to be resolved as shown in Eq. 4 (e.g.
Eq. 5).

A.effort = B.voltage

A.flow + B.current = 0
(4)

BondGraph.positive.effort = positive.voltage

BondGraph.positive.flow + positive.current = 0
(5)

Modelica mechanical translational flange maps to CyPhy
translational power port: C(A,B) is going to be resolved
as shown in Eq. 6.

A.position = B.position

A.force + B.force = 0
(6)

Bond graph mechanical translational port maps to CyPhy
translational power port: C(A,B) is going to be resolved as
shown in Eq. 7.

A.flow = der(B.position)

A.effort + B.force = 0
(7)

Modelica mechanical rotational flange maps to CyPhy rota-
tional power port: C(A,B) is going to be resolved as shown
in Eq. 8.

A.angle = B.angle

A.torque + B.torque = 0
(8)

Bond graph mechanical rotational port maps to CyPhy rota-
tional power port: C(A,B) is going to be resolved as shown
in Eq. 9.

A.flow = der(B.angle)

A.effort + B.torque = 0
(9)

The structure of CyPhyML is rich enough to define multiple
behavior models for the same component e.g. on different
fidelity or abstraction level. The current state of the tools
does not support this concept, but CyPhyML does. Related
part of the simplified conceptual meta-model of CyPhyML
is shown in Figure 4.

Figure 4: CyPhyML meta-model part

4.1.3 Externals of CyPhyML components
A subsystem or a system that contains components and
other subsystems is called Component Assembly in CyPhyML.
Component Assemblies have the same interfaces as compo-
nents. There are two key differences between components
and component assemblies: (i) Component assemblies can
contain other components and other component assemblies;
(ii) behavior of component assemblies is defined implicitly
through the composition of its child objects, but behavior
of components is defined explicitly in its behavior model.
Feature (i) makes building hierarchical systems and subsys-
tems possible. Feature (ii) hides the behavioral modeling
language specific concepts, and users use a single abstract
concept to build system models. Since component assem-
blies and components have the same type of interfaces as
well as composition rules, those elements are interchange-
able. Switching between components and component assem-
blies helps system designers refine their systems and subsys-
tems further. For instance, assume that we would like to
design a drive train (Component Assembly), and our sys-
tem breakdown structure contains a power pack (Compo-
nent) and a drive line (Component). Each component has
an associated behavior model, but if one would like to refine
the system-subsystem breakdown structure, the power pack
could be decomposed into a Component Assembly, with an
engine (Component) and a transmission (Component). In
this case, the dynamic behavior model for the power pack
is given by the composition of two components: engine and
transmission. oka

4.1.4 Composition
Composition of Components, Component Assemblies, and
internals of Component Assemblies in CyPhyML is sup-
ported through ports of various types. Each port type has
one or more variables based on its type. The composi-
tion rules are different for: (i) parameter ports, (ii) signal
ports (causal), and (iii) power ports (acausal) from mul-



tiple physics domains. Figure 5 depicts an abstract con-
ceptual model of CyPhyML between ports. CyPhyML has
many more connection types to enforce compatibility be-
tween ports on the meta-model level, and there are some
composition restrictions that are encoded as constraints us-
ing the Object Constraint Language. The semantics of com-

Figure 5: CyPhyML meta-model composition

position is as follows: Parameters are variables that can
be connected to subsystem level parameters or to param-
eters of the behavior model. The directional connection be-
tween parameters means that they pass their values to the
subsystem level during model instantiation. Their value is
time-independent; therefore, they do not change during the
dynamics simulation. Signal ports are causal input/output
ports, which are used to perform some computation in the
signal domain or pass signal values from controllers to actu-
ators in the dynamic system. Their value is time-dependent
during the dynamic simulation. To propagate parameters
and signals among systems and subsystems takes no power.
If modelers are interested in power loss on those connec-
tions, they need to use power interfaces to model power
losses accordingly. There are different types of power ports
such as electrical, mechanical translational, and mechanical
rotational. Electrical power ports share potential and cur-
rent (flow) variables, mechanical translational power ports
share position and force (flow) variables, and mechanical ro-
tational power ports share angle and torque (flow) variables.
When multiple power ports are connected together, the al-
gebraic sum of the flow variables is equal to zero and the
potential variables are equal [14]. Since the composition is
defined using acausal power interfaces, components can be
power sinks (loads) or power sources (drivers) at any time,
as determined bhy the power (i.e. energy) distribution in
the system.

4.2 Simulation
4.2.1 Bond Graphs to Simulink

Our first approach supports Hybrid Bond Graph Language
and Simulink blocks. The benefit of Simulink is its wide
range of library elements, but Simulink itself does not sup-
port acausal modeling. We built a HBG library for Simulink
in order to perform a smoother translation between Cy-
PhyML models and Simulink. CyPhyML supports acausal
models, but the translation has a disadvantage: All Simulink
blocks are causal elements, which means that inputs and
outputs must be identified during model construction time.
Using HBGL, input and output relationships are given after
we run a procedure called the Sequential Causal Assignment
Procedure (SCAP). The Simulink HBG library is generic
enough to perform the causality updates during simulation.
The problem is that the Simulink model must capture all

possible signal paths that can occur during the simulation,
and the model’s complexity increases drastically. In addi-
tion to the size of the model, the solver has an additional
overhead because the causality must be recomputed and up-
dated during the simulation.

Another problem that we encountered is that each element
from HBGL has an associated element in the Simulink HBG
library, but for storage elements we used only integral blocks.
The number of integral block in a system gives the number
of independent state variables. Therefore, if the original
model had dependent state variables, we could not map it
to a valid Simulink model using this approach. Thus, we
were looking for a modeling language which supports acausal
modeling, open-source libraries, and has some open-source
tools/solvers which can execute the simulations of the com-
posed system models. The modeling language should also
resolve the dependent state-variables and their initialization
problem.

4.2.2 CyPhyML models to Modelica
To overcome this limitation, we turned towards Modelica,
which supports acausal modeling, open-source libraries, and
has some open-source tools/solvers which can execute the
simulations of the composed system models. These tools
support optimization techniques and also resolve the depen-
dent state-variables and their initialization problem. The
modeling approach described below supports acausal sys-
tem capture via Modelica Standard Library power ports,
with Modelica Standard Library semantics as well as Bond
Graphs.

One of the target languages of CyPhyML is Modelica, which
means that a translator can generate equations or instances
of library elements that use equations (e.g. a Bond Graph
library) as well as connect statements for connections. The
translator uses interfaces from Modelica Standard Library
3.2 and elements from the Bond Graph library for Model-
ica if bond graphs are present in the model. Modelica does
not have any notion of CyPhyML elements, and the transla-
tor works from a semantically rich domain to a semantically
poor domain. For future purposes and clarity, the gener-
ated Modelica models are marked with information from
the source domain using Modelica class inheritance. For in-
stance, each generated model that was a component in Cy-
PhyML extends a base class from ISIS.Icons.Component in
the Modelica model. After the CyPhyML models have been
translated into Modelica models, the hierarchical structure
of the generated models resembles the original CyPhyML
model’s hierarchy. This helps users to navigate their model
the same way they do in CyPhyML. The variable tree struc-
ture of simulation results look the same, and it is easy to
find the appropriate subsystems and plot variables using any
Modelica tool.

CyPhyML uses Test Benches to establish a simulation or
test case for a system. In general, a system itself is not
enough to perform a simulation; it requires a context, which
contains test drivers and/or environments that interact with
the system. Test Benches are described in [10] and are out
of the scope of this paper, but were used to generate the
simulation results for the examples.



5. RELATED WORK
Modeling of real-time and embedded systems is not new; for
example the tools AToM3 [1], Fujaba [6] and Ptolemy [2]
have demonstrated the feasibility of the approach. In com-
parison to our work, we focus on different paradigms, and
our approach is more centered on composition as well as the
integration of CPS. Ptolemy [2] is an actor-oriented model-
ing framework that supports heterogeneous model composi-
tion using various Models of Computation (MoC). However,
the actors appears to have clearly distinguished input and
output ports through which different actors interact with
each other, as determined by the MoC. Outputs depend
on inputs and the state of the actor, hence the inputs are
always independent variables - thus actors are functional
(if we count the actor state as an ’input’ to the function).
In our approach, the components establish a mathemati-
cal constraint (expressed as an equation) among the val-
ues represented by the ports of the component which is al-
ways true, and where ports are directionless. Model-based
composition has been specified by several Domain Specific
Modeling approaches. For example, [8] and [4] summarize
the main results in Model-Based Design of CPS. As far as
heterogeneous systems are concerned, [5] provides an thor-
ough overview of the existing modeling approaches. Our
focus is on the composition of heterogeneous components,
instead a general approach we provide a solution for model-
ing complex electro-mechanical systems. The concept of in-
terchangeable components is a novel result of our approach.
It is also possible to use SysML for specifying the compo-
sition rules of CPS components. Paredis et al [12] present
a transformation specification to integrate Modelica models
with SysML models. However, we not only provide a mod-
eling language with syntax and semantics, but a tool chain
for automatic transformations as well. Another difference
is that SysML4Modelica contains the Modelica blocks and
its equations as well. Our tools abstract away the specifics
of Modelica and focus only on the details required to per-
form the integration of physical components. Furthermore,
our solution is able to support multiple paradigms, such as
Bond Graphs.

6. CONCLUSIONS
In this paper we presented the syntax and the semantics of
an integration language that uses the multi-paradigm mod-
eling approach. In this component-based integration lan-
guage, component models can embed models from differ-
ent tools, formalisms, and paradigms such as Bond Graphs
and Modelica. While the integration language has well-
defined interfaces and composition rules, components (using
the same interface) implementing the same functionality are
interchangeable. Moreover, components can be composed
through their interfaces, which are parameters, signal ports
(causal) and power ports (acausal). While both signal and
power ports are supported, the composition is able to han-
dle causal and acausal components. Connections between
power ports make sharing state variables across component
boundaries possible. We selected Modelica tools (compil-
ers/solvers) to perform the simulation of the composed sys-
tem design.

7. ACKNOWLEDGMENTS
This work was supported by DARPA under contracts FA8650-
10-C-7082 and FA8650-10-C-7075.

8. REFERENCES
[1] J. de Lara, H. Vangheluwe, and M. Alfonseca.

Meta-modelling and graph grammars for
multi-paradigm modelling in atom3. Software and
Systems Modeling, 3:194–209, 2004.
10.1007/s10270-003-0047-5.

[2] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the ptolemy approach. Proceedings of
the IEEE, 91(1):127 – 144, jan 2003.

[3] P. Fritzson and P. Bunus. Modelica - a general
object-oriented language for continuous and
discrete-event system modeling and simulation. In
Simulation Symposium, 2002. Proceedings. 35th
Annual, pages 365 – 380, april 2002.

[4] H. Giese, B. Rumpe, B. Schätz, and J. Sztipanovits.
Science and engineering of cyber-physical systems
(dagstuhl seminar 11441). Dagstuhl Reports,
1(11):1–22, 2011.

[5] C. Hardebolle and F. Boulanger. Exploring
multi-paradigm modeling techniques. SIMULATION:
Transactions of The Society for Modeling and
Simulation International, 85:688–708, November 2009.

[6] S. Henkler, J. Greenyer, M. Hirsch, W. Schafer,
K. Alhawash, T. Eckardt, C. Heinzemann, R. Loffler,
A. Seibel, and H. Giese. Synthesis of timed behavior
from scenarios in the fujaba real-time tool suite. In
Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 615 –618, may
2009.

[7] V. U. ISIS. Generic Modeling Environment.
http://www.isis.vanderbilt.edu/projects/gme.

[8] S. Lacoste-Julien, H. Vangheluwe, J. de Lara, and
P. Mosterman. Meta-modelling hybrid formalisms. In
Computer Aided Control Systems Design, 2004 IEEE
International Symposium on, pages 65 –70, sept. 2004.

[9] Z. Lattmann. A multi-domain functional dependency
modeling tool based on extended hybrid bond graphs.
Master’s thesis, Vanderbilt University, 2010.

[10] Z. Lattmann, A. Nagel, J. Scott, K. Smyth, J. Ceisel,
C. vanBuskirk, J. Porter, S. Neema, T. Bapty,
D. Mavris, and J. Szipanovits. Towards Automated
Evaluation of Vehicle Dynamics in System-Level
Designs. In Proc. ASME International Design
Engineering Technical Conf. & Computers and
Information in Engineering Conf. (IDETC/CIE
2012), Aug 2012.

[11] M. Otter, H. Elmqvist, and S. E. Mattsson.
Multidomain Modeling with Modelica. In P. A.
Fishwick, editor, Handbook of Dynamic System
Modelling, chapter 36, pages 36.1 – 36.27. Chapman &
Hall/CRC, 2007.

[12] C. J. Paredis, Y. Bernard, R. M. Burkhart, H.-P.
de Koning, S. Friedenthal, P. Fritzson, N. F.
Rouquette, and W. Schamai. An Overview of the
SysML-Modelica Transformation Specification. In
2010 INCOSE International Symposium, July 2010.

[13] The MathWorks, Inc. Simulink/Stateflow Tools.
http://www.mathworks.com.

[14] J. Willems. The behavioral approach to open and
interconnected systems. Control Systems, IEEE,
27(6):46 –99, Dec 2007.


